Improved Purely Additive Fault - Tolerant
نویسندگان
چکیده
Let G be an unweighted n-node undirected graph. A βadditive spanner of G is a spanning subgraph H of G such that distances in H are stretched at most by an additive term β w.r.t. the corresponding distances in G. A natural research goal related with spanners is that of designing sparse spanners with low stretch. In this paper, we focus on fault-tolerant additive spanners, namely additive spanners which are able to preserve their additive stretch even when one edge fails. We are able to improve all known such spanners, in terms of either sparsity or stretch. In particular, we consider the sparsest known spanners with stretch 6, 28, and 38, and reduce the stretch to 4, 10, and 14, respectively (while keeping the same sparsity). Our results are based on two different constructions. On one hand, we show how to augment (by adding a small number of edges) a fault-tolerant additive sourcewise spanner (that approximately preserves distances only from a given set of source nodes) into one such spanner that preserves all pairwise distances. On the other hand, we show how to augment some known fault-tolerant additive spanners, based on clustering techniques. This way we decrease the additive stretch without any asymptotic increase in their size. We also obtain improved fault-tolerant additive spanners for the case of one vertex failure, and for the case of f edge failures.
منابع مشابه
Improved Purely Additive Fault-Tolerant Spanners
Let G be an unweighted n-node undirected graph. A βadditive spanner of G is a spanning subgraph H of G such that distances in H are stretched at most by an additive term β w.r.t. the corresponding distances in G. A natural research goal related with spanners is that of designing sparse spanners with low stretch. In this paper, we focus on fault-tolerant additive spanners, namely additive spanne...
متن کاملAdditive Fault Tolerant Control Applied to Delayed Singularly Perturbed System
The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary; the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of delayed system. The additive con...
متن کاملOn Synchronisation in Fault-Tolerant Data and Compute Intensive Programs over a Network of Workstations
An application structured as a fault-tolerant bag of tasks adapts easily to changing resources. To be represented by a single bag of tasks, a computation must decompose into purely independent tasks. The work summarised here investigates performance of structuring approaches applicable where this ideal is not possible, partly through analysis and partly through measurements of a realistic fault...
متن کاملAdditive fault tolerant control of nonlinear singularly perturbed systems against actuator fault
This paper presents the design of an additive fault tolerant control for nonlinear time-invariant singularly perturbed systems against actuator faults based on Lyapunov redesign principle. The overall system is reduced into subsystems with fast and slow dynamic behavior using singular perturbation method. The time scale reduction is carried out when the singular perturbation parameter is set to...
متن کاملEvolutionary QCA Fault-Tolerant Reversible Full Adder
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
متن کامل